If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x=63
We move all terms to the left:
x^2-10x-(63)=0
a = 1; b = -10; c = -63;
Δ = b2-4ac
Δ = -102-4·1·(-63)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{22}}{2*1}=\frac{10-4\sqrt{22}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{22}}{2*1}=\frac{10+4\sqrt{22}}{2} $
| -32=x-32 | | 103=-5(5a-6)-2 | | —32=x-32 | | 3(6-x)+17=0 | | x^2-10x+63=0 | | 7(2+5 | | 3/4x+5=2.5 | | X2ª+8x-12=72 | | 1-(h+10)-10=10-2h | | (k^2)-10k+9=0 | | 2n-13=75 | | 5(2^x)-3=32 | | 5+24x=2*(5x-53) | | 210j²+5j=-5j | | 2v=8v−6 | | (2x-1)³-10=54 | | a²-81=0 | | 125(x-1)+5(3x)=630 | | 2q^2-110q+900=0 | | 3+2•5=y | | 3^2=9x1024 | | X2*y=90 | | 3+2=x5 | | 5(2x-1)=(3x+1)(x-3) | | 5x+0.45x=49.5 | | g-9.8=-6 | | |3x+1|=10* | | -8x=7-(7.2x+8.8)+1x | | w-4.9=4.5 | | 21x+157=3 | | 2=2.5x+7 | | y-7.8=1.9 |